Warning: mkdir(): No space left on device in /www/wwwroot/NEW7.COM/func.php on line 127

Warning: file_put_contents(./cachefile_yuan/lszsx.com/cache/75/8bf7a/651dd.html): failed to open stream: No such file or directory in /www/wwwroot/NEW7.COM/func.php on line 115
阜阳投资发展集团有限公司

您的当前位置:首页 > 休闲 > 野外的蚊子更毒?蚊子也欺生? 对虫子的免疫力有待生效 正文

野外的蚊子更毒?蚊子也欺生? 对虫子的免疫力有待生效

时间:2025-05-15 05:52:20 来源:网络整理 编辑:休闲

核心提示

ScientistsinventnewalgorithmtoimproveaerosolmonitoringonChina'sFY-4Asatellite_GuangmingOnlineScienti

ScientistsinventnewalgorithmtoimproveaerosolmonitoringonChina'sFY-4Asatellite_GuangmingOnlineScientistsinventnewalgorithmtoimproveaerosolmonitoringonChina'sFY-4AsatelliteBEIJING,Feb.12(Xinhua)--ScientistshaverecentlyintroducedanewalgorithmthatcombinesdeeplearningandtransferlearningtoimproveaerosolmonitoringonChina'sFY-4Asatellite.Thestudy,publishedinthejournalEngineering,wasconductedthroughacollaborativeeffortbytheInstituteofAtmosphericPhysics(IAP)oftheChineseAcademyofSciences,NationalSatelliteMeteorologicalCenter,theHarbinInstituteofTechnology,andotherinstitutes.ScientistsbelievethataccuratemeasurementsofatmosphericaerosolsarepivotalinunderstandingEarth'sradiationbalance,climatechange,andairquality.AboardChina'sgeostationarymeteorologicalsatelliteFY-4A,theAdvancedGeostationaryRadiationImager(AGRI)scansChinaeveryfiveminutes,providingcrucialdataformonitoringaerosolspatiotemporalvariations.However,theinflexibilityoftraditionalphysicalretrievalsalgorithms,coupledwiththeinsufficientnumberofground-basedsunphotometersites,poseschallengesinmeetingtheextensivesamplerequirementsformachinelearninginaerosolopticaldepth(AOD)retrievals.0000000000Inresponsetothesechallenges,thescientistsdevelopedaninnovativeAODretrievalsalgorithmthatcombinesdeeplearningandtransferlearning.Thenewalgorithmincorporateskeyconceptsfromthedarktargetanddeepbluealgorithmstofacilitatefeatureselectionformachinelearning.Accordingtothestudy,independentvalidationconfirmsthatthealgorithmishighlyaccurateinestimatingAGRIaerosollevels.Theresultsshowastrongcorrelationwithexpectedvalues,indicatingthealgorithm'sreliabilityinpredictingaerosolopticaldepth."Ourstudyshowcasesthesignificantpotentialofmergingthephysicalapproachwithdeeplearningingeoscientificanalysis,"saidtheleadauthorFuDisongfromtheIAP."Theproposedalgorithmholdspromiseforapplicationtoothermulti-spectralsensorsaboardgeostationarysatellites,"Fuadded.Editor:DisclaimerTheviewsandopinionsexpressedinthisarticlearethoseoftheauthor's,GMW.cnmakesnorepresentationsastoaccuracy,suitability,orvalidityofanyinformationonthissiteandwillnotbeliableforanyerrors,omissions,ordelaysinthisinformation.
网站地图